HFBR Characterization

Presentation Outline

- HFBR Characterization History
- Review of Terminology
- 3. Characterization Methods and Results
 - A. Activated Components
 - B. HFBR Systems
 - Reactor Building Structures
 - D. Ancillary/Support Structures
 - E. Soil Characterization

Review of Terminology

Characterization:

Identification and measurement of contamination in and around the facility.

- Chemical contamination
- Radioactive contamination and radiation levels

HFBR Characterization History

- December 1996: HFBR shut down for routine work
- 1997 1999: Extensive groundwater characterization
- November 1999: Decision to permanently shut down HFBR

HFBR Characterization History

- 2001: Characterization of the HFBR, including reactor, systems, structures, support buildings, and soils
 - Determine current state of the facility in preparation for stabilization and future decommissioning
- 2004 2005: Characterization of additional areas
 - Fill in gaps in the previous characterization and estimate the amount of radioactivity present at the HFBR

Characterization Results for Hazardous Materials

Hazardous Materials:

- Typical of construction materials from facilities built in the 1960's
- Asbestos Containing Materials in certain floor tiles, ceiling tiles, gaskets, insulation
- Lead in paint, shielding
- PCBs in paint and in passenger elevator pit
- Heavy metals: lead and zinc were detected in wipe samples

Radioactive Materials at HFBR

- What radioactive materials are produced?
- How fast does it "decay" away (half-life)?
- How much is there?
 - Measured in units such as Curies, or picocuries per gram (pCi/g)
- Where is it? Inside a shield, in soil?
- What form is it in? Solid metal, liquid, dust?

How Does Something Become Radioactive?

Brookhaven Science Associates U.S. Department of Energy

HFBR Characterization Methods and Results

- A. Activated Components
- B. HFBR Systems
- c. Reactor Building Structures
- Ancillary/Support Structures
- E. Soil Characterization

Characterization of Activated Components

Curies

Reactor Vessel: 1400

Reactor Vessel Internals: 13,400

Control Rod Blades: 291,000

Thermal Shield: 96,400

Biological Shield: 13,300

Total: 416,000

Brookhaven Science Associates U.S. Department of Energy

Activated Components - Decay

Activated Components – Radiation Level

Brookhaven Science Associates U.S. Department of Energy

Characterization of Systems

Building 750 System Characterization

Curies in 2005

Primary Coolant and Closely	
Related Systems	45 Ci
Liquid D/F Waste System	5 Ci
Piping "hot spots"	3 Ci
TOTAL	53 Ci

About 80% of activity in systems is from Tritium

Characterization of Reactor Building Structures

Structures, Floors, Walls, Dome

- Operations Level
- Experimental Level
- Equipment Level

Reactor Building Structures

- Generally very low radiation fields, radioactively clean, with some exceptions:
 - Equipment level A, B, and Shutdown Cells contain pumps and heat exchangers that handled primary coolant
 - Access to the reactor top on the Operations Level
 - Certain compartments such as the Beam Plug Storage Facility, and the Refueling Tool Boxes
- Total Tritium in concrete < 0.1 Ci.</p>
- Total contamination from activation and fission products < 0.01 Ci.</p>

Characterization of Ancillary/Support Facilities

Facilities Not Radiologically Contaminated

707/707A: Pump House and Switch Gear

751: Cold Neutron Facility

707B: Water Treatment House

Brookhaven Science Associates U.S. Department of Energy

715: Stack Monitoring Facility

18

Radiologically Contaminated Facilities

704: Fan House

802: Tritium Evaporation Facility

705: Stack

HFBR Walkover Survey

- Performed comprehensive gamma survey
 - Majority of area determined clean
 - Less than 0.3% of the 6,640 twenty-five ft² grids had findings >5,000 cpm above background threshold
- Positive findings
 - Isolated in size, mostly particles, and extent
 - Attributable to past practices
 - Not attributable to chronic leaks, releases, etc.
- 21 findings total
 - All but one cleaned up as part of survey

Brookhaven Science Associates U.S. Department of Energy

BROOKHAVEN NATIONAL LABORATORY

Characterization Below HFBR: Methodology

- Designated 6 biased locations
- Core bore through 5 feet of concrete to soil
- Soil samples taken every 2 feet to groundwater (~ 20 samples per location)
- Groundwater samples taken at 48 and 52 feet below the Equipment Level

Characterization Below HFBR: Results

- Tritium found in soil up to 47 pCi/gram at 2 of 6 location
- Tritium found in groundwater from 500 to 7,000 pCi/liter (up to 7 pCi/gram) at 5 of 6 locations
- Potential exists for other higher level pockets of tritium
- Groundwater monitoring continues under OU-3 downgradient of the HFBR

HFBR Characterization Summary

- A. Activated Components
- B. HFBR Systems
- c. Reactor Building Structures
- D. Ancillary/Support Structures
- E. Soil Characterization

